The Next Generation Air Transportation System

Jay Merkle,
Chief Architect
1 May 2007
2007 ICNS Conference

ystem t Office

JPDO 3 Year View

FY06

Achievement of a clear, affordable roadmap to achieve NextGen

Developed Concept of Operations, Enterprise Architecture, Roadmap and Benefits

Defined the Required Portfolio to implement the Roadmap

Defined Investment Options – Institutional, Policy and Technology Tradeoffs

FY07

Achieve a funded portfolio of aligned programs across agencies

Refine Concept of Operations, Architecture, Roadmap, Benefits and Portfolio

Complete Program Planning of Portfolio Elements Report on Performance

FY08

Further inclusion of Agency R&D and Implementation and the management of the Portfolio

Achieve additional inclusion of operational scenarios, definitions, and off-nominal situations in EA and ConOps

Transition from Planning to Implementation

Concept of Operations Operational View

The overall operational environment supported by NextGen.

System-Wide Transformation – The Key is "Transformation"

Key Capabilities - Aircraft Trajectory-Based Operations

Services and Operations based on precise trajectory execution

- ➤ Self-Separation Services
- > Flow Corridors
- ➤ Super Density Arrival/Departure Airspace

Key Capabilities - Super Density Operations

- ➤ Use of RNP operations and procedures that eliminate requirements for visual operations
- Mitigation of wake vortex constraints through detection and real-time adaptation of separations
- ➤ Improved runway incursion prevention algorithms to increase efficiency and safety
- ➤ Automatic distribution of runway braking action reports
- ➤ Distribution of taxi instructions before landing that can be automatically executed without waiting for a separate clearance
- ➤ Use of aircraft sensors to more quickly identify the need for de-icing operations, increasing efficiency of surface movements.

Key Capabilities - Equivalent Visual Operations

- > Improved information availability which allows aircraft operation without regard to viability
- ➤ Access to PNT enables increased accessibility for both airport surface and arrival and departure operations
- ➤ Enables operators more predictable and efficient operations regardless of meteorological conditions

Key Capabilities - Performance-Based Operations and Services

- Collaborative ATM
- ➤ Modernized Surface Ops.
- ➤ Weather Impacted Ops.
- ➤ Trajectory-based Ops.
- ➤ Trajectory-based Separation Management
- ➤ Dynamic Resource & Aerospace Management

Key Capabilities - Weather Assimilated into Decision-Making

- ➤ Net-centric weather information is made available and understandable to all approved users.
- ➤ A reliable virtual, common weather picture is foundational for optimal air transportation decision-making.
- > Presentation of weather data is tailored to user operational needs.
- Widespread use of integrated probabilistic weather-related decision support systems
- Automatic updates to users based on operational need
- An adaptive observing system integrating ground, airborne, and
- >spaced based sensors

Key Capabilities - Network Enabled Access

- ➤ Network Enabled Operations (NEO)
- ➤ Network Enabled Infrastructure (NEI)
- ➤ Network Enabled Weather (NEW)

Key Capabilities - Position, Navigation and Timing Services (PNT)

- > Air routes are independent of the location of ground-based navigation aids.
- > RNAV is used everywhere; RNP is used where required to achieve system objectives, which reduces controller workload and increases efficient use of NAS resources (airspace and runways).
- > System performance meets operational needs to service the demand.
- Increased availability of guided approaches at smaller airports (mostly) for general aviation with lower minimums

Key Capabilities - Layered Adaptive Security

- ➤ Adaptive Security for People, Cargo, Airports and Aircraft
- ➤ Risk Assessment-Driven Evaluation and Response
- ➤ Positive Identification for People and Cargo
- ➤ Preventive Threat Detection and Mitigation

System-Wide Transformation – The Key is "Transformation"

ATM - Goals and Objectives

Seconds

ATM is the dynamic, integrated Collision management of air traffic and **Avoidance** airspace—safely, economically, and efficiently—through the cost-effective provision of facilities and seamless services in collaboration with all parties.

- Meet both a diverse operational objectives and aircraft capabilities and characteristics
- Meet users needs for access, efficiency, and predictability.
- > Provide safe, secure, of sufficient capacity, environmental acceptable and affordable for all users

Separation Trajectory Management Management

- Ensure safe Manage trajectories separation within flows
 - Negotiate trajectories
 - Assign sequencing & spacing

Flow Contingency Management

- Apply Flow Contingency Management procedures and policy to ensure safe levels of traffic at resulting capacity levels
- Forecast demand/ capacity imbalances
 - Identify high complexity air space
 - Identify Constrained airspace

Demand/ Through C-ATM, Capacity Assess Range Imbalance of Options To Create Capacity Forecast

Select a Capacity Management Strategy

Years

Capacity

Management

Design

Field

If the C-ATM process

does not identify an

appropriate capacity

management strategy

airspace

· Assign staffing

infrastructure

Short Term

Apply known Procedures, adjust airspace boundaries, or allocate personnel for forecast demand period

Long Term

Develop new airspace designs, new tools. etc. to better accommodate demand

Long Term Initiate activities to address changes in US or international regulations and guidelines

Airports - Goals and Objectives

Airports are the nexus for many NextGen transformational elements:

- ➤ Operational services support integrated management of aircraft and ground support equipment on the ramp during all weather operations
- ➤ Technology enables improved access and efficient utilization of common use airport infrastructure
- ➤ Mission support services enable preservation of critical airports, efficient development of airport and regional systems, and NextGen enabled design standards

Net-Centric Infrastructure Services - Goals and Objectives

The concept of net-centricity ensures a robust, globally interconnected network in which information is shared in a timely and consistent way among users, applications, and platforms during all phases of aviation transportation efforts.

> Supports air navigation service, airport, and flight operations

- ➤ Enables shared situational awareness
- Supports compliance and regulation oversight
- ➤ Supports security, safety, environmental, and performance management services

Next Generation Air Transportation System
Joint Planning and Development Office

Shared Situational Awareness - Goals and Objectives

Access can be accomplished in an automated and virtual fashion where a standing request for information by subscribers is produced, using established protocols and standards.

- Shared Situation Awareness
 - Real-time free-flow of info from private, commercial, & government sources, integrated internationally
 - Push/pull processes, secured according to needs and priorities
 - Common awareness of day-to-day ops, events, crises
- ➤ Aircraft are integral "nodes" in network
- ➤ Integrated surveillance system across agencies and borders

Layered Adaptive Security Services - Goals and Objectives

To maintain effective security management across major stakeholders, a collaborative framework is composed of the following key functions and processes:

- National Aviation SecurityPolicy
- ➤ Aviation Security Stakeholder Involvement
- Aviation Integrate Risk Management (IRM)
- ➤ Aviation Security Implementation
- ➤ Aviation Security Assurance

Safety - Goals and Objectives

The key to success is the implementation of safety management systems integrated at the national level. The integrated safety management approach being developed includes:

- ➤ a national aviation safety strategy,
- a safety improvement culture,
- ➤ a prognostic safety risk management (SRM) capability,
- ➤ a robust and protected safety information sharing and analysis procedure, and
- an enhanced safety assurance function.

Environment - Goals and Objectives

NextGen Environmental objectives include providing a framework to enable environmental protection that allows for sustained aviation growth:

Significant Increase in Capacity

Challenges

Noise

Local air quality

Energy intensity

Water quality

- ➤ Reduce significant noise and aircraft engine emissions in absolute terms
- ➤ Proactively address emerging environmental issues (e.g. water quality, energy intensity, and global climate change)
- ➤ Enable Environmental Management Systems (EMS) capabilities system wide

Global Harmonization - Goals and Objectives

A key step toward gaining global endorsement of the NGATS is to be sure every technology, policy, and procedural option or "element" is compatible with existing global requirements:

- ➤ Harmonized systems, procedures for "borderless" interoperability
- ➤ Partnerships to promote common solutions for common problems
- ➤ Early, continuing participation in developing global standards, procedures to ensure satisfaction of US requirements
- Promote US position and preferred standards globally

Upcoming JPDO Additions – Aircraft/Avionics – Goals and Objectives

NextGen Aircraft objectives would likely include developing a framework to integrate transformational technologies and capabilities for airframes, engines, and equipage:

- ➤ Airframe Technologies
- ➤ Engine Performance
- > Equipage Improvements

Thank You

www.jpdo.aero

